
Formalizing Hypotheses with Concepts

Bernhard Ganter and Sergei O. Kuznetsov

1 Technische Universität Dresden
ganter@math.tu-dresden.de

2 Technische Universität Dresden
kuznetso@math.tu-dresden.de

Abstract. The frequently used strategy of forming hypotheses, based on
observations, to generate predictions can be formalized in several ways.
We study an elaborated approach that has some conceptual flavour and
translate the basic ideas in the language of Formal Concept Analysis,
blazing the trail for applications to other conceptual structures as well.
We investigate the relation to pseudo intents, discuss algorithmic ques-
tions, and give an example.

Motivation

Imagine that on your way to work there is a junction where you frequently run
into a traffic jam. You would like to know in advance whether you are likely to
get in the hold up or not, because then you could take a detour to avoid a delay.
But you known of no single obvious cause for the congestion. You know that
certain constellations are very likely to cause such a problem, and you also know
of situations where it is rather safe. Probably you will develop your personal
hypotheses, based on your positive and negative experiences, to predict traffic
jams at that junction.
A similarly structured problem, concerning pharmacological applications, is

known as the Structure-Activity Relationship (SAR) Problem [14], where struc-
tural properties of chemical compounds (such as particular subgraphs of their
molecular graphs) are used as predictors for certain biological activities (like
mutagenicity, sedativity, or such).
The logical framework of such problems has been extensively studied. One

of the broader approaches is called the JSM-method (after John Stuart Mill, an
English philosopher of the 19th century, who was one of the first to systematically
consider schemes of inductive reasoning). It was proposed by V. Finn [3] in 1983
and has been developed ever since by his group at the Moscow VINITI Institute.
From the standpoint of Artificial Intelligence, that method can be considered as a
formal system of inductive plausible reasoning based on examples and knowledge
about the domain (see Finn [4]) or as a method of Machine Learning that employs
examples and counterexamples of a goal attribute (compare [10]).
The original formalization of the JSM-method used by Finn was the language

of first-order predicate calculus with two sorts of variables, six truth-value types
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and “quanitification over tuples with variable length” [1]. However, the under-
lying combinatorial structure of the JSM-method suggests analogies to another
method of knowledge processing, that of the Formal Concept Analysis (FCA) [6].
Some attempts to connect these approaches were already made in [11], [12]. In
this paper we propose a partial translation from the language of the JSM-theory
into that of FCA.1

1 Hypotheses

We consider a finite set M of “structural attributes”, a set G of objects (or
observations) and a relation I ⊆ G×M , such that (g,m) ∈ I if and only if object
g has the attribute m. Such a triple K = (G,M, I) is called a formal context.
It is the basic data type of Formal Concept Analysis. Using the derivation
operators, defined for A ⊆ G, B ⊆ M by

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B},

we can define a formal concept (of the context K) to be a pair (A,B) satisfying
A ⊆ G, B ⊆ M , A′ = B, and B′ = A. A is called the extent and B is called
the intent of the concept (A,B). These concepts, ordered by

(A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2

form a complete lattice, called the concept lattice of K := (G,M, I). Double
application of the derivation operators, i.e., (B′)′ or (A′)′ are abbreviated as B′′

or A′′, repsectively. It can easily be shown that ′′ is a closure operator, i.e., it is
monotone, idempotent, and extensive. Further on, this operator will be referred
to as closure and sets A ⊆ G, B ⊆ M such that A′′ = A, B′′ = B as closed.

In what follows we shall need the notion of implication between attribute sets
[6]. An implication A → B between a pair of subsets of the attribute set M
holds for a given formal context K := (G,M, I) if every object that has all the
attributes from A also has all attributes from B. This is equivalent to A′ ⊆ B′.

In addition to the structural attributes of M we consider a goal attribute
w /∈ M . This divides the set G of all objects into three subsets: The set G+
of those objects that are known to have the property w (these are the positive
examples), the set G− of those objects of which it is known that they do not
have w (the negative examples) and the set Gτ of undetermined examples, i.e.,
of those objects, of which it is unknown if they have property w or not. This
gives three subcontexts of K = (G,M, I):

K+ := (G+,M, I+),K− := (G−,M, I−), and Kτ := (Gτ ,M, Iτ ),

where for ε ∈ {+,−, τ} we have Iε := I ∩ Gε × M .
1 In terms of the JSM-theory, we consider only “counterexample forbidding hypothe-
ses” and the “atomistic case,” where there is a single goal attribute
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Intents are, as defined above, attribute combinations shared by some of the
observed objects. In order to form hypotheses about structural causes of the goal
attribute w, we are interested in sets of structural attributes that are shared by
some positive, but by no negative examples. Thus, a positive hypothesis, or
a (+)-hypothesis, for w is an intent of K+ that is not contained in the intent g′

of any negative example g ∈ G−. A negative hypothesis, or a (-)-hypothesis,
is defined accordingly. If g is an object such that its intent2

g′ := {m ∈ M | (g,m) ∈ I}

contains a positive or a negative hypothesis then we say, for short, that g contains
that hypothesis.
We intend to use these hypotheses as predictors for the undetermined ex-

amples, predicting that an object g ∈ Gτ has the goal attribute if it contains a
positive hypothesis and does not have w if it contains a negative one. These cases
may be not exclusive. It may happen that an object contains both a positive and
a negative hypothesis. An object that contains a positive, but no negative hy-
pothesis will be classified positively. Negative classifications are defined similarly.
If g′ contains hypotheses of both kinds, or if g′ contains no hypothesis at all,
then the classification is contradictory or undetermined, respectively. The under-
lying principle can be formulated in the line of J.S.Mill as “common effects are
brought about by common causes.” We may restrict to minimal (w.r.t. inclusion
⊆) hypotheses, positive as well as negative, since an object obviously contains a
positive hypothesis if and only if it contains a minimal positive hypothesis, etc.
Of course there is, without further assumptions, little hope that these pre-

dictions will be correct. Realistically, we have no reliable information on the
unknown set Gw of those objects in G which do have w, except for G+ ⊆ Gw

and G− ∩ Gw = Ø. We have not even excluded the possibility that the goal
does not depend at all on the structural attributes. It might happen that there
are positive and negative examples with exactly the same intents. All we can
guarantee is the following, trivial fact:

Proposition 1. A positive example g ∈ G+ contains a positive hypothesis if
and only if g′ is not contained in the intent of any negative example.

Nevertheless it seems natural to operate with hypotheses, at least in situa-
tions where we expect that the goal attribute somehow depends on the structural
attributes. An analogue of the following assumption on the (unknown) set Gw

is called the Spinoza-axiom in [4]:

The goal attribute w is properly implied in (G,M, I) if there are sets
P,N ⊆ P(M)3 such that

1. g ∈ Gw ⇐⇒ P ⊆ g′ for some P ∈ P,
2. g /∈ Gw ⇐⇒ N ⊆ g′ for some N ∈ N .
2 For brevity sake we write g′ and g′′ instead of {g}′ and {g}′′, respectively.
3 P(M) is the power set of M
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Thus, the goal attribute is properly implied if there is a set P of positive
attribute combinations that force the goal attribute w, and a set N of negative
attribute combinations that exclude w, and if, moreover, these combinations
would suffice to classify all objects in G.

However, this condition does not require that these positive or negative at-
tribute combinations have been observed as such. Let us therefore assume that
each P and each N is supported by some example, i.e., that
3. for each P ∈ P there is some g ∈ G+ such that P ⊆ g′,
4. for each N ∈ N there is some g ∈ G− such that N ⊆ g′.

It seems that this condition is rather strong. It does however not suffice to
make the hypotheses work, as the following example shows:

a b c d e f +,−, τ w
g1 × × + yes
g2 × × + yes
g3 × × − no
g4 × × − no
g5 × × × τ yes, but undetermined
g6 × × × τ no, but undetermined

In this formal context, we have P := {{a, c}, {b, c}}, N := {{d, e}, {d, f}}. Each
set in P is a positive hypothesis, each set in N is a negative hypothesis. But {c}
is also a positive hypothesis and {d} is a negative one, which has the effect that
each undetermined object contains both a positive and a negative hypothesis.
Note that in this example each g ∈ Gw contains a positive hypothesis and

every g /∈ Gw contains a negative one.
Another condition would be that whatever is not causal for the goal attribute

will be observed to be non-causal. This may be formalized as follows:
5. If for a set S ⊆ G+ there is no P ∈ P with P ⊆ S′, then there is some

h ∈ G− such that S′ ⊆ h′,
6. if for a set T ⊆ G− there is no N ∈ N with N ⊆ T ′, then there is some

h ∈ G+ such that T ′ ⊆ h′.

Proposition 2. If conditions 1), 2), 5), and 6) are satisfied, then every positive
hypothesis contains some P ∈ P and every negative hypothesis contains some
N ∈ N .

Then, in particular, any object containing a positive hypothesis must be in
Gw and those containing a negative hypothesis must be in the complement ofGw.
The converse is not necessarily true: it may happen that the observed hypotheses
are too large and that, therefore, not every g ∈ Gw contains a positive hypothesis
in its intent. We may then try to improve our hypotheses by enlarging G+ and
G− by those elements from Gτ that contain a positive or a negative hypothesis,
respectively. Conditions 1), 2), 5), and 6) will remain satisfied, but the new
configuration may lead to new hypotheses which are smaller then the ones before.
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This process may be iterated. For such an iteration process suggested by Finn
there is no guarantee that the conditions 1) to 6) are fulfilled. The dynamics of
such an iteration process will not be studied here.4

2 Hypotheses and Implications

We have introduced (positive) hypotheses as attribute combinations that imply
the goal attribute w, but with an additional “conceptual” condition: only intents
of formal concepts are considered as hypotheses. We explain shortly why this is
reasonable.
Suppose that C is some attribute combination occurring only in positive

examples, so that we may expect that C implies w. But suppose that there are
further attributes, say d1, . . . , dn, that also “come with C” in the sense that each
observed object having C also has the set of attributes {d1, d2, . . . , dn}. Then
there are two typical strategies to generate a hypothesis:

The courageous strategy would argue: “Since we have observed that w occurs
whenever C does, we shall predict w when we observe C.”
The cautious strategy would say: “We have observed that in case of C we also
have d1, . . . , dn and w, so we shall predict w if we meet the same conditions,
i.e., C ∪ {d1, . . . , dn}. If you think that the set of attributes {d1, . . . , dn}
is superfluous, give an example in which, given C, the set of conditions
{d1, . . . , dn} does not hold, but w does.”

The JSM-approach follows the cautious strategy. It is assumed that hypothe-
ses are closed under implications to other structural attributes.
However, the subsets closed under implications are precisely the intents of K.

Therefore, it is sensible to allow only intents (of concepts of K) as hypotheses.
There is a powerful tool for studying implications in formal contexts: the

notion of a pseudo intent. The definition is recursive5. A pseudo intent of a
formal context (G,M, I) is a set P ⊆ M satisfying

1. P �= P ′′, and
2. for every pseudo intent Q ⊆ P , Q �= P , we have Q′′ ⊆ P .

Pseudointents can be used to give an irredundant representation of the impli-
cational theory of a formal context, see [6] for details. We show that they are
closely related to the minimal hypotheses:
Let K, K+ and K− be as above and let

K± := (G+ ∪ G−,M ∪ {w}, I+ ∪ I− ∪ G+ × {w})
be the context of the positive and the negative examples, extended by the goal
attribute w in the natural way. The derivation and closure operators of this
4 For details, see [1], [3], [4].
5 . . . and a little confusing, because there seems to be no base case. But note that
the empty set automatically fulfills the second condition, since it contains no proper
subsets at all.
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context will be denoted by superscripts ± and ±±, respectively. In particular, for
a given set P ⊆ M of attributes we write P±± to denote the smallest intent of
K± that contains P . Derivation and closure operators for contexts K+ and K−
will be denoted by superscripts +, − and ++, −−, respectively.

Proposition 3. Let H be some minimal positive hypothesis for w (so in partic-
ular w /∈ H). Then

1. if P ⊆ H is a pseudo intent with w ∈ P±± then P±± = H ∪ {w},
2. there is some pseudo intent P of K± such that P ⊆ H and P±± = H ∪{w}.
3. If P is a pseudo intent such that w /∈ P but w ∈ P±±, then P±± \ {w} is a

positive hypothesis6.

Proof. Suppose that H contains a pseudo intent P with w ∈ P±±. Then, since
H is an intent of K+, we get P++ ⊆ H++ = H, thus P++ is a hypothesis for
w. The minimality of H implies H = P++, which proves 1).
Since H±± = H ∪ {w}, there must be some pseudo intent P ⊆ H with

w ∈ P±±. This gives 2).
The closure of P is P±± and thus P±± \ {w} = P++ is closed in K+ and is

contained in no negative example, since otherwise w /∈ P±±. Therefore this set
is a hypothesis.

In what follows, a pseudo intent P such that w �∈ P and w ∈ P±± will be called
(w-)generative.

3 An Example

To illustrate the notion of a minimal hypothesis and the relation of hypotheses
with pseudointent-based implications we consider an expert analysis of 17 winter
wheel chains (that improve behavior of a car on winter roads). Information was
given by the table below from the ADAC Magazine (1999, no. 11).
The values of the system attribute give the type of a chain system: SK - rope

chain (Seilkette), SRK - steel ring chain (Stahlringkette), SMS - quick mounting
chain (Schnellmontage-System).
The mount attribute takes the values F and F or R to denote that a chain

of particular type can be mounted either only on the front wheels or both on
the front and rear wheels. The values of price are given in DM, the values of
con give the average expert asessment of the conveniency of a particular type of
chain; the values of snow give average expert asessments of the maneuverability
of a car, with a particular kind of chain, on snow; ice means the same for ice;
the values of dur give average expert asessments of the durability of a particular
kind of chain; the values of grade give average expert asessments of the general
quality of a particular chain type. Smaller values of attributes con, snow, ice,
dur, and grade correspond to better asessments of the corresponding chain
properties.
6 not necessarily a minimal one
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type system mount price con snow ice dur grade
1 SK F 206 1.9 1.4 1.8 2.7 1.8
2 SRK F or R 520 2.1 0.8 3.8 2.3 1.9
3 SK F 160 1.7 1.9 1.6 3.7 2.1
4 SK F 213 1.7 2.0 2.4 3.4 2.1
5 SMS F or R 598 1.6 2.4 2.7 2.8 2.2
6 SK F 109 2.0 1.9 2.4 3.7 2.3
7 SRK F or R 325 2.0 2.1 3.2 2.8 2.3
8 SMS F or R 498 1.5 3.3 3.5 2.0 2.4
9 SRK F or R 396 2.8 2.1 3.1 2.5 2.6
10 SRK F or R 325 2.2 2.2 4.6 3.2 2.6
11 SRK F or R 389 2.0 2.2 3.3 4.3 2.6
12 SRK F 298 2.5 2.3 3.3 2.8 2.6
13 SK F 149 1.9 2.5 4.0 3.8 2.6
14 SMS F or R 684 1.7 3.3 4.4 2.2 2.6
15 SK F 99 2.8 2.2 2.5 4.0 2.7
16 SK F 140 2.6 2.3 3.3 3.4 2.7
17 SK F 215 2.3 3.8 4.8 2.3 3.1

Here the values of the type attribute substitute tradenames.

As goal attributes we considered the grade (obtained as an average expert
asessment of quality) and the price. Since the information was given in numerical
values, we had to scale it before obtaining hypotheses and pseudointents. Scalings
in both cases were similar, except for the goal attributes.

3.1 Grade

First, we made an assumption that the values of grade less or equal to 2.1
testify to the high quality of an item and the values of grade greater or equal
to 2.6 testify to the low quality of an item. Thus, items 1-4 were treated as
positive and items 9-17 were treated as negative examples, respectively. The
items with numbers 5-8 were neglected as those with ambiguous medium-value
grades. Thus, the positive and negative contexts w.r.t. the goal attribute grade
are given as follows (the values of the grade attribute are given in brackets
to indicate that this is the goal attribute and its actual values are insignificant
within a context, either positive or negative):

Positive context

type system mount price con snow ice dur (grade)
1 SK F 206 1.9 1.4 1.8 2.7 (1.8)
2 SRK F or R 520 2.1 0.8 3.8 2.3 (1.9)
3 SK F 160 1.7 1.9 1.6 3.7 (2.1)
4 SK F 213 1.7 2.0 2.4 3.4 (2.1)
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Negative context

type system mount price con snow ice dur (grade)
9 SRK F or R 396 2.8 2.1 3.1 2.5 (2.6)
10 SRK F or R 325 2.2 2.2 4.6 3.2 (2.6)
11 SRK F or R 389 2.0 2.2 3.3 4.3 (2.6)
12 SRK F 298 2.5 2.3 3.3 2.8 (2.6)
13 SK F 149 1.9 2.5 4.0 3.8 (2.6)
14 SMS F or R 684 1.7 3.3 4.4 2.2 (2.6)
15 SK F 99 2.8 2.2 2.5 4.0 (2.7)
16 SK F 140 2.6 2.3 3.3 3.4 (2.7)
17 SK F 215 2.3 3.8 4.8 2.3 (3.1)

The present example is not yet fully compatible with our definitions from Sec-
tion 1. To obtain a formal context, we apply a conceptual scaling (see [6] for
details) replacing a given many-valued attribute by one-valued ones. We only
list the scale attributes. The first two scales are nominal, the other are ordinal.

system SK SRK SMS
mount F F or R
price ≤ 160 ≤ 215 ≤ 520 > 520
con ≤ 2.1 ≤ 2.5 > 2.5
snow ≤ 2.0 > 2.0
ice ≤ 2.4 ≤ 3.0 ≤ 4.0 > 4.0
dur ≤ 3 ≤ 3.7 > 3.7

The table is read as follows. Original many-valued attributes are listed in the
first column. Each many-valued attribute staying in the beginning of the row
is replaced by several Boolean attributes that stay in other row positions. For
example, the many-valued attribute system is replaced by attributes SK, SRK,
and SMS, so that each object gets exactly one of them. The attribute mount is
scaled similarly. This type of scaling is called nominal in [6]. The many-valued
attribute price is replaced by four Boolean attributes ≤ 160, ≤ 215, ≤ 520, and
> 520. In contrast to the nominal attributes system and mount, the objects
that have the attribute ≤ 160, have also attributes ≤ 215 and ≤ 520 (in what
follows, for brevity sake, we do not write this explicitly in the descriptions of
object intents); the objects that have the attribute ≤ 215 have also the attribute
≤ 520. The other numerical attributes are scaled similarly. This type of scaling
is called ordinal in [6].
The following positive and negative minimal hypotheses were obtained (they

are unique, since the intersections of all positive and of all negative example
intents are nonempty):
– the minimal positive hypothesis: {con ≤ 2.1, snow ≤ 2.0, ice ≤ 4, dur

≤ 3.7};
– the minimal negative hypothesis: {snow > 2.0}.
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The generative (w.r.t. the grade attribute) pseudointents of K± are {snow
≤ 2.0} and {con ≤ 2.1, ice ≤ 4, dur ≤ 3.7}.

The first one {snow ≤ 2.0} is obviously a pseudointent of K±, since it is a
nonclosed one-element subset of M . The second one is a pseudointent of K±,
since it is not closed w.r.t. ± and all its subsets are closed.
If we introduce the “antigoal attribute” as a new attribute (in this case it

corresponds to the “low quality of an item”), then the corresponding generative
pseudointent will be {snow > 2.0}.
One can see that the positive minimal hypothesis is the closure (in the pos-

itive context with examples 1-4 and all attributes except for the general grade)
of the both generative pseudointents (compare with Proposition 3). The impli-
cations

{snow ≤ 2.0} → {good quality},
{con ≤ 2.1, ice ≤ 4, dur ≤ 3.7} → {good quality},

which correspond to the generative pseudointents, coincide here with the minimal
conditions for good quality. They can be used, e.g., by a producer who wants to
attain the best sales at the lowest cost. For example, it suffices for a chain to
make a car behave good on snow to make customer consider it as a good one.
The implication

{con ≤ 2.1, snow ≤ 2.0, ice ≤ 4, dur ≤ 3.7} → {good quality},
which corresponds to the minimal positive hypothesis, informs one about the
whole bunch of attributes relative to the notion “good chain.” This can be in-
terpreted as a viewpoint of a customer who wants to know what is really a good
chain. A good chain should be convenient, behave excellently on snow and at
least satisfactorily on ice, and its life time should not be very small.
Both viewpoints are justified at their own and the consideration of both

provides one with multifacetous understanding of the situation under study.
Note that for the above consideration of causes of good quality it is also

reasonable to consider nonminimal hypotheses. For example, the (+)-hypothesis

{SK, F, price ≤ 215, con ≤ 2.1, snow ≤ 2.0, ice ≤ 4.0, dur ≤ 3.7}
describes a class of relatively cheap chains, which have the same system and same
mounting possibilities with good behavior on snow and satisfactory behavior on
ice, that have good asessment of quality. One can also indicate (-)-hypotheses

{SRK, F or R, price ≤ 520, snow > 2.0};
{SK, F, price ≤ 215, snow > 2.0},

which describe different classes of chains with only low quality. These classes use
different systems, have different mounting possibilities and their prices range
within different intervals.
Nonminimal hypotheses can give information about taxonomy of positive and

negative examples, which may be useful for the understanding of real causes of
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the goal attribute or its absence. If a customer identifies the quality of a good
with some construction and utilization specificity, then these hypotheses can
allow him to form simple consumer heuristics like the following one: “the quality
of SRK chains with front or rear mounting is not high, but the quality of SK
chains with front mounting can be different depending on other parameters.”

3.2 Price

In the case of this goal attribute we took the items with costs less or equal to
DM 215 to be cheap (positive examples, items 1, 3, 4, 6, 13, 15, 16, 17) and the
items with costs greater or equal to DM 430 to be expensive (negative examples,
items 2, 5, 8, 14). The items with numbers 7, 9, 10, 11, 12 were neglected as
those with ambiguous medium-value prices. The grade attribute is scaled to
obtain the following three ordinal attributes grade ≤ 2.1, grade ≤ 2.5, grade
> 2.5. Other attributes were scaled in the same way as in the case of the grade
goal attribute.
The following positive and negative minimal hypotheses were obtained (they

are unique, since the intersections of all positive and of all negative example
intents are nonempty):

– the minimal positive hypothesis: {SK, F}
– the minimal negative hypothesis: {F or R, con ≤ 2.1, dur ≤ 3.0}.
There are two generative (w.r.t. the “cheap” antigoal attribute) pseudointents:
{SK} and {F}.
If we introduce the “antigoal attribute” as a new attribute (in this case it

corresponds to the “expensiveness”), then the corresponding three generative
pseudointents are {F or R}, {con ≤ 2.1}, and {dur ≤ 3.0}.

As in the case with the grade goal attribute, each pseudointent generative
w.r.t. the goal attribute price gives small sufficient conditions for the occurrence
of the goal attribute, but minimal hypotheses give more detailed description of
what does a “cheap chain” mean and what does an “expensive chain” mean.
The consideration of the hypotheses and pseudointent-based implications

shows that the quality of chains (asessed by experts) is fairly independent of
their price.
Among nonminimal hypotheses that may be of interest here we can indicate

the negative hypothesis

{SMS, F or R, con ≤ 2.1, snow ≥ 2.0, dur ≤ 3.0},
which describes a class of expensive chains with a certain system, certain mount-
ing possibilities, convenient, but with bad behavior on snow.

4 Algorithmic Problems

As it was shown in [5], the set of all formal concepts of a formal context can be
generated in time O(|G|2 · |M | · |B(K)|), where |B(K)|) is the size of the concept
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lattice of the context K, by an algorithm with polynomial delay. Recall that an
algorithm for listing a family of combinatorial structures is said to have delay d
[9] if and only if it satisfies the following conditions whenever it is run with any
input of length p:
1. It executes at most d(p) computation steps before either outputting the

first structure or halting.
2. After any output it executes at most d(p) machine instructions before

either outputting the next structure or halting. An algorithm whose delay is
bounded from above by a polynomial in the length of the input is called a
polynomial delay algorithm[9].
In [7] the algorithm Next Concept from [5] was extended for the construc-

tion of the concept lattice for a given context (also with polynomial time delay).
Algorithms for generating hypotheses can be found in [13]. However, to generate
the set of all hypotheses, one can also adapt the Next Concept algorithm,
running it in the bottom-up order (from least extents to least intents) in the
following way. To obtain all hypotheses one should repeatedly call the following
procedure, where H+ denotes the current set of positive hypotheses.

Next Hypothesis

0. A: = a hypothesis from H+
1. FOUND: = false;
2. g: = LAST IN(G+);
3. while not (FOUND or PREVIOUS IN(g,G+) = g) do
4. begin
5. if g �∈ A then
6. begin
7. A := A ∪ {g};
8. FOUND:= min(A++\A) > g and HYP(A+);
9. end;
10. A := A\{g};
11. g:=PREVIOUS IN(g,G+);
12. end;
13. next hyp:=FOUND;
14. H+: = H+ ∪ {A+};

The function HYP(X) tests whether the positive intent X is a hypothesis,
i.e., the condition ∀f ∈ G− X �⊆ f−.
For X ⊆ G+ the function min(X) returns the smallest (w.r.t. the ordering

in G+) element of X.
The function PREVIOUS IN(g,G+) returns g if g is the first element of G+,

and returns the greatest element of G+ smaller than g, otherwise.
The function LAST IN(G+) returns the greatest element of G+ (i.e., the

element with the greatest number).
When the algorithm that computes the set of all hypotheses by calling Next

Hypothesis generates a new positive intent, it needs to test whether this intent
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was not generated before and whether it is not contained in a negative example
(line 8). Execution of line 8 takes (|G+| · |M |+ |G−| · |M |) time. If the positive
intent is not contained in any negative example, then the process of concept gen-
eration goes further, otherwise, the intent is not a hypothesis and the algorithm
backtracks. Thus, the test is executed for no more than O(|G+| · |H+|) positive
concepts (H+ is the set of all positive hypotheses) and the resulting time com-
plexity is O(|G+| · |G−| · |M | · |H+|). The algorithm for finding all hypotheses
has delay O((|G+|2 + |G−|) · |M |), i.e., is a polynomial delay algorithm.
To find all minimal hypotheses, one needs to replace the line 8 with the

following line 8∗ (and make some minor changes in the procedure that calls
Next Hypothesis):

8∗. FOUND:= min(A++\A)>g and ∀f ∈G−(A+ �⊆ f− and MINHYP(A+));

The function MINHYP(X) tests whether the hypothesis X is a minimal
hypothesis: first, all sets (X∩g+), g ∈ G+\X maximal by inclusion are generated,
then the condition (X ∩ g+) �⊆ g−

− is tested for each generated set and each
g− ∈ G−.
The MINHYP test requires additional O(|G+|2|M | · |G−|) operations for at

most |H+| hypothesis intents, so the resulting batch algorithm that constructs
the set of all minimal hypothesis has O(|G+|2|M | · |G−| · |H+|) time complexity.
The algorithm that computes all minimal hypotheses by calling Next Hypoth-
esis with line 8∗ is not polynomial-delay. It is not clear whether it satisfies a
weaker notion of efficiency, namely has cumulative polynomial delay. Recall that
an algorithm listing a set of objects is said to have a cumulative delay d [8] if it
is the case that at any point of time in any execution of the algorithm with any
input of length p the total number of instructions that have been executed is at
most d(p) plus the product of d(p) and the number of structures that have been
output so far. The cumulative polynomial delay means that d(p) is a polynomial
of p.
Below, we give an incremental algorithm Next Example that modifies the

list Hm
+ of all minimal positive hypotheses if the example context K is updated

with a new object gn.
• If gn has the goal attribute w, then all implications H → w of the old

context remain true in the new context, but it may happen that some ofH ∈ Hm
+

are no longer minimal hypotheses. These must be replaced by H ∩ g+n , which is
clearly a minimal hypothesis.

• If gn does not have w, then all implications H → w of the old context with
H ⊆ g−

n become false. If H ∈ Hm
+ and H ⊆ g−

n , then H is no longer a positive
hypothesis (it is called a falsified hypothesis), and it is deleted from Hm

+ . There
may be new minimal hypotheses, which must be of the form (H∪{m})++, where
m �∈ g−

n . These new minimal hypotheses are “most general specializations” of
the old ones relative to the new negative example. We systematically generate
the sets (H ∪ {m})++ and check if they are minimal hypotheses.
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Therefore, our procedure is this:
1. For every H ∈ Hm

+ , H ⊆ g−
n we delete H from Hm

+ .
2. For every H ∈ Hm

+ , H ⊆ g−
n and every m ∈ M \ g−

n we construct F :=
(H ∪ {m})++. The set F (of tentatively new minimal hypotheses) is updated
with F .
3. Each element of F that is a superset of another element of F is deleted from F .
4. The family Hm

+ is updated with sets from F . Finally, each element of Hm
+ that

is a supersets of Hm
+ is deleted from Hm

+ .
Below we present a more formal pseudocode description of the algorithm.

Here for two families of sets X and Y the function MERGE(X ,Y) takes the
union of X and Y, discards every element set of it that is a superset of another
set from the union (only one set is left for a pair of equal sets), and returns
the resulting family of sets. Obviously, MERGE(X ,X ) selects all sets from X
minimal with respect to the set-theoretic inclusion ⊆.
The function NEXT IN(Hm

+ , X, Cond) returns “true” if there is an element
of Hm

+ that is lectically greater than X and satisfies condition Cond (in this case
X takes the value of this element) and returns “false” otherwise. The function
FIRST IN(Hm

+ , X, Cond) returns “true” if there is an element of Hm
+ that sat-

isfies condition Cond (in this case X takes the value of the lectically smallest
such element) and returns “false” otherwise.

Next Example

0 F := ∅,
1 if w ∈ g±

n then
2 if FIRST IN(Hm

+ , H, �⊆ g+n ) then
3 repeat
4 if for all h �∈ w± g+n ∩ H �⊆ h+ then
5 Hm

+ := Hm
+ \{H} ∪ {H ∩ g+n }

6 until not NEXT IN(Hm
+ , H,⊆ g+n )

7 else
8 if FIRST IN(Hm

+ , H,⊆ g−
n ) then

9 repeat
10 Hm

+ := Hm
+ \{H}

11 for all m �∈ g−
n do F := F ∪ {(H ∪ {m})++}

12 until not NEXT IN(Hm
+ , H,⊆ g−

n )
13 if F �= ∅ then
14 begin
15 F :=MERGE(F ,F)
16 Hm

+ :=MERGE(Hm
+ ,F)

17 end

Complexity. If gn is a new positive example (i.e., w ∈ g±
n ), then the algorithm

terminates in time O(|Hm
+ | · |G−| · |M |), since it intersects each old minimal

hypothesis with g+n and tests the inclusion of the result in the intent of each
negative example (lines 1-6).
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If gn is a new negative example (i.e., w �∈ g±
n ), then in the worst case it will

take much more time to terminate. The lines 9-12 are executed in the worst case
for each element of Hm

+ and for each m ∈ g−
n and, therefore, require O(|Hm

+ | ·
|M | · |G+| · |M |) time, since line 11, the most time-consuming operation of the
cycle 9-12, is done in O(|G+| · |M |) time,

Since F has at most |Hm
+ | · |M | elements, the lines 15 and 16 can be executed

in O(|Hm
+ |2|M |2) time each. Note that line 15 is not necessary, it can reduce the

execution time in practice, but does not affect the upper bound of the worst-case
complexity. Thus, the complexity of executing lines 14-17 is also O(|Hm

+ |2|M |2)
and the total time complexity of the algorithm is O(|Hm

+ |2|M |2+|Hm
+ |·|M |2|G|).

Note that the worst-time complexity of the algorithm is quadratic in the
size of the set of all minimal hypotheses and not of the set of all hypotheses.
Therefore, when the number of all minimal hypotheses is much less than the
number of all hypotheses, the incremental algorithm can operate faster than the
batch algorithm, whose time complexity is linear in the number of all hypotheses.

5 Conclusion

We considered the JSM-method of generating hypotheses from positive and neg-
ative examples in terms of Formal Concept Analysis. We presented conditions
that ensure correct behavior of hypotheses relative to examples. We showed how
hypotheses and minimal hypotheses are related to pseudointent-based implica-
tions. We proposed a batch algorithm for computing all hypotheses and/or all
minimal hypotheses in time linear in the number of all hypotheses. We also pro-
posed an incremental algorithm for computing all minimal hypotheses, which
runs in time quadratic in the number of minimal hypotheses. The example con-
cerning consumer properties of wheel chains illustrated the relationship between
hypotheses and implications.
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